3.379 \(\int \frac{\sqrt{\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^3} \, dx\)

Optimal. Leaf size=337 \[ \frac{\left (3 a^2 A b+a^3 B-7 a b^2 B+3 A b^3\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^2 d \left (a^2-b^2\right )^2}+\frac{\left (5 a^2 A b+a^3 (-B)-5 a b^2 B+A b^3\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 a b d \left (a^2-b^2\right )^2}-\frac{\left (10 a^2 A b^3+3 a^4 A b-10 a^3 b^2 B+a^5 B-3 a b^4 B-A b^5\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{4 a b^2 d (a-b)^2 (a+b)^3}-\frac{\left (5 a^2 A b+a^3 (-B)-5 a b^2 B+A b^3\right ) \sin (c+d x) \sqrt{\cos (c+d x)}}{4 a d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}-\frac{(A b-a B) \sin (c+d x) \sqrt{\cos (c+d x)}}{2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2} \]

[Out]

((5*a^2*A*b + A*b^3 - a^3*B - 5*a*b^2*B)*EllipticE[(c + d*x)/2, 2])/(4*a*b*(a^2 - b^2)^2*d) + ((3*a^2*A*b + 3*
A*b^3 + a^3*B - 7*a*b^2*B)*EllipticF[(c + d*x)/2, 2])/(4*b^2*(a^2 - b^2)^2*d) - ((3*a^4*A*b + 10*a^2*A*b^3 - A
*b^5 + a^5*B - 10*a^3*b^2*B - 3*a*b^4*B)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(4*a*(a - b)^2*b^2*(a + b)
^3*d) - ((A*b - a*B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(2*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^2) - ((5*a^2*A*b +
 A*b^3 - a^3*B - 5*a*b^2*B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(4*a*(a^2 - b^2)^2*d*(a + b*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.919423, antiderivative size = 337, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.212, Rules used = {2999, 3055, 3059, 2639, 3002, 2641, 2805} \[ \frac{\left (3 a^2 A b+a^3 B-7 a b^2 B+3 A b^3\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^2 d \left (a^2-b^2\right )^2}+\frac{\left (5 a^2 A b+a^3 (-B)-5 a b^2 B+A b^3\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 a b d \left (a^2-b^2\right )^2}-\frac{\left (10 a^2 A b^3+3 a^4 A b-10 a^3 b^2 B+a^5 B-3 a b^4 B-A b^5\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{4 a b^2 d (a-b)^2 (a+b)^3}-\frac{\left (5 a^2 A b+a^3 (-B)-5 a b^2 B+A b^3\right ) \sin (c+d x) \sqrt{\cos (c+d x)}}{4 a d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}-\frac{(A b-a B) \sin (c+d x) \sqrt{\cos (c+d x)}}{2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x]))/(a + b*Cos[c + d*x])^3,x]

[Out]

((5*a^2*A*b + A*b^3 - a^3*B - 5*a*b^2*B)*EllipticE[(c + d*x)/2, 2])/(4*a*b*(a^2 - b^2)^2*d) + ((3*a^2*A*b + 3*
A*b^3 + a^3*B - 7*a*b^2*B)*EllipticF[(c + d*x)/2, 2])/(4*b^2*(a^2 - b^2)^2*d) - ((3*a^4*A*b + 10*a^2*A*b^3 - A
*b^5 + a^5*B - 10*a^3*b^2*B - 3*a*b^4*B)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(4*a*(a - b)^2*b^2*(a + b)
^3*d) - ((A*b - a*B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(2*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^2) - ((5*a^2*A*b +
 A*b^3 - a^3*B - 5*a*b^2*B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(4*a*(a^2 - b^2)^2*d*(a + b*Cos[c + d*x]))

Rule 2999

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((B*a - A*b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e
 + f*x])^n)/(f*(m + 1)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c +
d*Sin[e + f*x])^(n - 1)*Simp[c*(a*A - b*B)*(m + 1) + d*n*(A*b - a*B) + (d*(a*A - b*B)*(m + 1) - c*(A*b - a*B)*
(m + 2))*Sin[e + f*x] - d*(A*b - a*B)*(m + n + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 0]

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^3} \, dx &=-\frac{(A b-a B) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac{\int \frac{\frac{1}{2} (A b-a B)-2 (a A-b B) \cos (c+d x)+\frac{1}{2} (A b-a B) \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx}{2 \left (a^2-b^2\right )}\\ &=-\frac{(A b-a B) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac{\left (5 a^2 A b+A b^3-a^3 B-5 a b^2 B\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{4 a \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}-\frac{\int \frac{\frac{1}{4} \left (7 a^2 A b-A b^3-3 a^3 B-3 a b^2 B\right )-a \left (2 a^2 A+A b^2-3 a b B\right ) \cos (c+d x)-\frac{1}{4} \left (5 a^2 A b+A b^3-a^3 B-5 a b^2 B\right ) \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 a \left (a^2-b^2\right )^2}\\ &=-\frac{(A b-a B) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac{\left (5 a^2 A b+A b^3-a^3 B-5 a b^2 B\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{4 a \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac{\int \frac{-\frac{1}{4} b \left (7 a^2 A b-A b^3-3 a^3 B-3 a b^2 B\right )+\frac{1}{4} a \left (3 a^2 A b+3 A b^3+a^3 B-7 a b^2 B\right ) \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 a b \left (a^2-b^2\right )^2}+\frac{\left (5 a^2 A b+A b^3-a^3 B-5 a b^2 B\right ) \int \sqrt{\cos (c+d x)} \, dx}{8 a b \left (a^2-b^2\right )^2}\\ &=\frac{\left (5 a^2 A b+A b^3-a^3 B-5 a b^2 B\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 a b \left (a^2-b^2\right )^2 d}-\frac{(A b-a B) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac{\left (5 a^2 A b+A b^3-a^3 B-5 a b^2 B\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{4 a \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac{\left (3 a^2 A b+3 A b^3+a^3 B-7 a b^2 B\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{8 b^2 \left (a^2-b^2\right )^2}-\frac{\left (3 a^4 A b+10 a^2 A b^3-A b^5+a^5 B-10 a^3 b^2 B-3 a b^4 B\right ) \int \frac{1}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{8 a b^2 \left (a^2-b^2\right )^2}\\ &=\frac{\left (5 a^2 A b+A b^3-a^3 B-5 a b^2 B\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 a b \left (a^2-b^2\right )^2 d}+\frac{\left (3 a^2 A b+3 A b^3+a^3 B-7 a b^2 B\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^2 \left (a^2-b^2\right )^2 d}-\frac{\left (3 a^4 A b+10 a^2 A b^3-A b^5+a^5 B-10 a^3 b^2 B-3 a b^4 B\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{4 a (a-b)^2 b^2 (a+b)^3 d}-\frac{(A b-a B) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac{\left (5 a^2 A b+A b^3-a^3 B-5 a b^2 B\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{4 a \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}\\ \end{align*}

Mathematica [A]  time = 4.19748, size = 369, normalized size = 1.09 \[ \frac{\frac{4 \sin (c+d x) \sqrt{\cos (c+d x)} \left (b \left (-5 a^2 A b+a^3 B+5 a b^2 B-A b^3\right ) \cos (c+d x)+a \left (-7 a^2 A b+3 a^3 B+3 a b^2 B+A b^3\right )\right )}{\left (a^2-b^2\right )^2 (a+b \cos (c+d x))^2}+\frac{\frac{2 \left (-9 a^2 A b+5 a^3 B+a b^2 B+3 A b^3\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}+\frac{16 a \left (2 a^2 A-3 a b B+A b^2\right ) \left ((a+b) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )-a \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )\right )}{b (a+b)}-\frac{2 \left (-5 a^2 A b+a^3 B+5 a b^2 B-A b^3\right ) \sin (c+d x) \left (\left (2 a^2-b^2\right ) \Pi \left (-\frac{b}{a};\left .-\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) F\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )-2 a b E\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )\right )}{a b^2 \sqrt{\sin ^2(c+d x)}}}{(a-b)^2 (a+b)^2}}{16 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x]))/(a + b*Cos[c + d*x])^3,x]

[Out]

((4*Sqrt[Cos[c + d*x]]*(a*(-7*a^2*A*b + A*b^3 + 3*a^3*B + 3*a*b^2*B) + b*(-5*a^2*A*b - A*b^3 + a^3*B + 5*a*b^2
*B)*Cos[c + d*x])*Sin[c + d*x])/((a^2 - b^2)^2*(a + b*Cos[c + d*x])^2) + ((2*(-9*a^2*A*b + 3*A*b^3 + 5*a^3*B +
 a*b^2*B)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + (16*a*(2*a^2*A + A*b^2 - 3*a*b*B)*((a + b)*Elli
pticF[(c + d*x)/2, 2] - a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]))/(b*(a + b)) - (2*(-5*a^2*A*b - A*b^3 + a
^3*B + 5*a*b^2*B)*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c
+ d*x]]], -1] + (2*a^2 - b^2)*EllipticPi[-(b/a), -ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*b^2*Sqrt[S
in[c + d*x]^2]))/((a - b)^2*(a + b)^2))/(16*a*d)

________________________________________________________________________________________

Maple [B]  time = 14.49, size = 1850, normalized size = 5.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^3,x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-4*B/b/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x
+1/2*c),-2*b/(a-b),2^(1/2))+2*(A*b-2*B*a)/b^2*(-1/a*b^2/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+
sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)-1/2/a/(a+b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/
2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1
/2))-1/2*b/(a^2-b^2)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4
+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2*b/(a^2-b^2)/a*(sin(1/2*d*x+1/2*c)^2)^(1
/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d
*x+1/2*c),2^(1/2))-3*a/(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/
2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+1/a/
(a^2-b^2)/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/
2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))-2*a*(A*b-B*a)/b^2*(-1/2/
a*b^2/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c
)^2+a-b)^2-3/4*b^2*(3*a^2-b^2)/a^2/(a^2-b^2)^2*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^
2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)-7/8/(a+b)/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c
)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/4/(a
+b)/(a^2-b^2)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/
2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b+3/8/(a+b)/(a^2-b^2)/a^2*(sin(1/2*d*x+1/2*c)^2)^(
1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*
d*x+1/2*c),2^(1/2))*b^2-9/8*b/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*s
in(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3/8*b^3/a^2/(a^2-b^2)^2*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^
(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9/8*b/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2
*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3/8*
b^3/a^2/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+si
n(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-15/4*a^2/(a^2-b^2)^2/(-2*a*b+2*b^2)*b*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*El
lipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+3/2/(a^2-b^2)^2/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*
x+1/2*c),-2*b/(a-b),2^(1/2))-3/4/a^2/(a^2-b^2)^2/(-2*a*b+2*b^2)*b^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d
*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(
a-b),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt{\cos \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(b*cos(d*x + c) + a)^3, x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt{\cos \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(b*cos(d*x + c) + a)^3, x)